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Introduction ) southamoton

New IMO regulations set to reach net-zero emissions by 2050.

Many decarbonization solutions, promoted as ideal, only consider funnel emissions.

A holistic life cycle assessment of fuel production and utilisation onboard is required.
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Shipping resistance towards change, attributed to high reliability standards and profit
loss risk.

Emphasis is mostly given in terms of fueling cost NOT total energy contribution.
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Case Study:

Propose a strategy for decarbonising the Greek Ferry industry

* Objectives:

Estimate the current emissions and consumption footprint of a representative vessel case
study.

Analyse the power demand on board to look for points in need of optimisation.

Investigate the benefits of having short-, medium- and long-term decarbonisation
solutions.

Compare different fueling alternatives in terms of their ‘Wind to Wake’ emissions and
energy footprint.
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Specifications

Type
Tonnage
Length
Beam
Draft

Propulsion &
Auxiliary

Speed
Capacity

Cruise ferry (Ice class)
16,850 GT

136.11 m

24.24 m

5.4 m

*4 x S.M.T.-Pielstick
12PC2-2V 17,652 kW
(claimed) (MDO), with
reduction boxes and CPP
*4 x Wartsila-Vasa 24
2.5MW (MGO)

22 kts max speed
18 kts service speed

*1,700 passengers
1,184 passenger beds
*350 vehicles
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*Lower calorific Values
of Fuels Examined:
MGO 42.7 MJ/kg

MDO 41 MJ/kg

LNG 45.5 MJ/kg
Methanol 19.9 MJ/kg
Ammonia 18.6 MJ/kg
Hydrogen 120 MJ/kg


https://en.wikipedia.org/wiki/Cruiseferry

Example Trip: Pireaus-Serifos-Sifnos-Milos
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Propulsion Power vs Speed:

e 183 nm

17.5

« 25.0 tonnes MDO for propulsion 150

« 5.1 tonnes of MGO for hotel
demand
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Propulsion Load vs Auxiliary Power Demand:
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Fuelling Scenarios Examined BB s o
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Original powertrain used as a baseline.

Decarbonisation strategies are divided into short-, medium- and long-term
solutions.

Short term solutions (3):

— Original powertrain with generator set
operational profile optimization

— New diesel electric powertrain

— LNG-electric powertrain

Medium term solutions (4):

— Carbon capturing and storage
— Methanol electric powertrain
— Ammonia electric powertrain
— Batteries

Long term Solution:

— Hydrogen fuel cell and battery powertrain



Original Powertrain Consumption and Emissions Profile

4 Main engines coupled to
reduction boxes, fuelled by MDO,
average sfc estimated to be 205
g/kWh

4 Generators fuelled by MGO with
Calculated Average fuel
consumption of 240g/kWh

Powertrain energy efficiency: 40.1%

Suggested course of action to
improve Generator operational
profile
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SFOC (g/kWh)

Operational Profiles of Auxiliary Generator Sets
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Optimised Powertrain Consumption and Emissions Profile @Q’[‘,‘fﬁ@%}ton

Short Trip:
« Generators are now running within
their optimum power range. 100000
. .. . 90000
« Powertrain efficiency increased to 20000
(o) (0)
40.7% (+0.6%) oo
« (COZ2 Emissions reduced by 1.7% 5 60000
compared to original scenario 4 50000
= 40000
30000
20000
10000
o L

MGO MDO co2

Short term solution #1



New-Era Generator Powertrain
Consumption and Emissions profile

« 2 main generator sets
(propulsion) with a combined
output of 17MW, fuelled by
MDO and 4 generators for
auxiliary demand

« Powertrain efficiency 42.7% due
to engines being more efficient
and yet suffering from
electricity conversion losses

Mass (kg)

« CO, Emissions reduced by 5%
due to higher efficiency (+2%)

Short term solution #2
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LNG Powertrain @ University of
Consumption and Emissions Profile Southampton

All generator-sets are fuelled by LNG

Powertrain overall efficiency is 41.9% 100000

90000

CO,equiv Emissions decreased by 1.3% 80000
compared to original Powertrain 70000
scenario, when a 30X COyeqiy factor — 60000

is assumed for methane slip. =3
@ 50000

o

. : =
Emissions footprint can be worse than 10000
‘modern” MDO powertrain, depending 30000
on methane slip factors. 20000

10000

0
LNG NOx CH4 CO2 equiv

Short term solution #3
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New-Era Generator + CCS Powertrain @Southaympton
Consumption and Emissions profile

- Generator configuration 80000
remains the same. 0000
« Powertrain fuel efficiency 40000
dropped to 30% due to the S
addition of Carbon capturing = VDO
equipment § . [ ] o
« CO, Emissions reduced by 65% ~20000

compared to original scenario 20000

-60000
ME AE CCS Total

Medium term solution #1



Methanol Powertrain

Consumption and Emissions Profile

100000
« All generator sets are fuelled 70000
by Methanol 80000
_ o _ 70000
« Powertrain efficiency is 41%
=5 60000
=
« CO, Funnel Emissions @ 50000
decreased by 5.9% compared S 40000
to original Powertrain.
30000
 Net emissions reduced by 76% 20000
10000

« Fuel consumption increased
1.84x by mass and 2x by 0
volume (69.9 m3)

Medium term solution #2
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Ammonia Powertrain @ University of
Consumption and Emissions Profile Southampton

« All generator sets are fuelled

by ammonia and results are 100000
basegl on experlme_ntal_englnes 90000
running on ammonia-diesel S0
blends
70000
« Powertrain efficiency is 41.7% = 60000
=
. G 50000
« CO, Funnel Emissions o
0 = 40000
decreased by 68% compared to
original Powertrain scenario 30000
20000
* N,O emissions are NOT 10000

included 30x CO,,,,;, factor

_ _ MGO Ammonia co2
« Fuel consumption increased
1.8x by mass and 2.2x by

volume (71.9 m3)

Medium term solution #3



Battery Powertrain @Sum\ﬁt‘sityof .
outnamption

Battery capacity is 50 MWh,, including a
10% safety margin.

Minimum battery size is expected to be
204 m3.

To recharge the same battery
sufficiently, 40MWe of grid output must
be employed, with a prolonged stay of
1 hour per port stop instead of 30 mins.

Local electricity grid capacity is
exceeded. Extra batteries must be
employed on shore, at each port stop.

Medium term solution #4



Hydrogen Powertrain
Consumption and Emissions Profile

« Powertrain is comprised of
Hydrogen PEM cells (18MW)
and batteries (2.5MWh)

« Powertrain efficiency increased
to 54.4%

« CO, Funnel Emissions are
eliminated

Mass (kg)

* Fuel consumption decreased
3.7x by mass and increased
3.3x by volume (111.4 m3)

Long term solution
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Energy (GJ) or Emissions Mass (mt)
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“Wind to Wake” Energies summary  @southampton

Energy Required Original Diesel Optimised Genset New MDO genset New MDO + CCS LNG Genset Methanol Genset Ammonia Genset H2 PEM FC
for Trip scenario scenario scenario scenario scenario Secnario Scenario scenario

B Trip Energy Input (G)) B Net CO2 (mt) M Energy for fuel production (GJ) M Total Energy (input)



“Take home”™ message
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Mew MDO+ LNG Genset Methanol Ammonia H2 PEM FC Batteries

Ratios

=

CCS scenario  scenario Genset Genset scenario
Secnario Scenario
B "WtW" Energy Ratio B Fuel Volume ratio Fuel Mass Ratio

« All alternative fuel propositions, are comparable in terms of additional volume sacrifice
compared to the original powertrain scenario

« Hydrogen system is the best option in terms of emissions output against total renewable
energy investment.
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YOUR QUESTIONS

Thank you for your attention

Any further questions:
P.Manias@soton.ac.uk



