

Route to 2050: Breaking the barriers towards shipping decarbonisation

SMMI-University of Southampton P.Manias, S.Turnock, D.Hudson, D.Teagle

16th April 2024

Introduction

- New IMO regulations set to reach net-zero emissions by 2050.
- Many decarbonization solutions, promoted as ideal, only consider funnel emissions.
- A holistic life cycle assessment of fuel production and utilisation onboard is required.

- Shipping resistance towards change, attributed to high reliability standards and profit loss risk.
- Emphasis is mostly given in terms of fueling cost NOT total energy contribution.

Brief Introduction of Wind to Wake Concept:

Case Study:

Propose a strategy for decarbonising the Greek Ferry industry

- Objectives:
 - Estimate the current emissions and consumption footprint of a representative vessel case study.
 - Analyse the power demand on board to look for points in need of optimisation.
 - Investigate the benefits of having short-, medium- and long-term decarbonisation solutions.
 - Compare different fueling alternatives in terms of their 'Wind to Wake' emissions and energy footprint.

Ferry Case study

111111111

1 11 11 11 11

AEGEAN SEA LINES

Specifications

Туре	<u>Cruise ferry</u> (Ice class)
Tonnage	16,850 GT
Length	136.11 m
Beam	24.24 m
Draft	5.4 m
Propulsion & Auxiliary	•4 × S.M.TPielstick 12PC2-2V 17,652 kW (claimed) (MDO), with reduction boxes and CPP •4 x Wärtsilä-Vasa 24 2.5MW (MGO)
Speed	22 kts max speed 18 kts service speed
Capacity	 1,700 passengers 1,184 passenger beds 350 vehicles

*Lower calorific Values of Fuels Examined: MGO 42.7 MJ/kg MDO 41 MJ/kg LNG 45.5 MJ/kg Methanol 19.9 MJ/kg Ammonia 18.6 MJ/kg Hydrogen 120 MJ/kg

Example Trip: Pireaus-Serifos-Sifnos-Milos

- 183 nm
- 25.0 tonnes MDO for propulsion
 - 5.1 tonnes of MGO for hotel demand

Fuelling Scenarios Examined

- Original powertrain used as a baseline.
- Decarbonisation strategies are divided into short-, medium- and long-term solutions.
- Short term solutions (3):
 - Original powertrain with generator set operational profile optimization
 - New diesel electric powertrain
 - LNG-electric powertrain
- Medium term solutions (4):
 - Carbon capturing and storage
 - Methanol electric powertrain
 - Ammonia electric powertrain
 - Batteries
- Long term Solution:
 - Hydrogen fuel cell and battery powertrain

Original Powertrain Consumption and Emissions Profile

- 4 Main engines coupled to reduction boxes, fuelled by MDO, average sfc estimated to be 205 g/kWh
- 4 Generators fuelled by MGO with Calculated Average fuel consumption of 240g/kWh
- Powertrain energy efficiency: 40.1%
- Suggested course of action to improve Generator operational profile

Operational Profiles of Auxiliary Generator Sets

Optimised Powertrain Consumption and Emissions Profile Short Trip:

- Powertrain efficiency increased to 40.7% (+0.6%)
- CO2 Emissions reduced by 1.7% compared to original scenario

University of

Southampton

Short term solution #1

New-Era Generator Powertrain Consumption and Emissions profile

- 2 main generator sets (propulsion) with a combined output of 17MW, fuelled by MDO and 4 generators for auxiliary demand
- Powertrain efficiency 42.7% due to engines being more efficient and yet suffering from electricity conversion losses
- CO₂ Emissions reduced by 5% due to higher efficiency (+2%)

Short term solution #2

LNG Powertrain Consumption and Emissions Profile

- All generator-sets are fuelled by LNG
- Powertrain overall efficiency is 41.9%
- CO_{2equiv} Emissions decreased by 1.3% compared to original Powertrain scenario, when a 30x CO_{2equiv} factor is assumed for methane slip.
- Emissions footprint can be worse than "modern" MDO powertrain, depending on methane slip factors.

New-Era Generator + CCS Powertrain Consumption and Emissions profile

- Generator configuration remains the same.
- Powertrain fuel efficiency dropped to 30% due to the addition of Carbon capturing equipment
- CO₂ Emissions reduced by 65% compared to original scenario

Methanol Powertrain Consumption and Emissions Profile

- All generator sets are fuelled by Methanol
- Powertrain efficiency is 41%
- CO₂ Funnel Emissions decreased by 5.9% compared to original Powertrain.
- Net emissions reduced by 76%
- Fuel consumption increased 1.84x by mass and 2x by volume (69.9 m³)

Ammonia Powertrain Consumption and Emissions Profile

- All generator sets are fuelled by ammonia and results are based on experimental engines running on ammonia-diesel blends
- Powertrain efficiency is 41.7%
- CO₂ Funnel Emissions decreased by 68% compared to original Powertrain scenario
- N₂O emissions are NOT included 30x CO_{2equiv} factor
- Fuel consumption increased 1.8x by mass and 2.2x by volume (71.9 m³)

Battery Powertrain

- Battery capacity is 50 MWh_e, including a 10% safety margin.
- Minimum battery size is expected to be 204 m³.
- To recharge the same battery sufficiently, 40MWe of grid output must be employed, with a prolonged stay of 1hour per port stop instead of 30 mins.
- Local electricity grid capacity is exceeded. Extra batteries must be employed on shore, at each port stop.

Hydrogen Powertrain Consumption and Emissions Profile

- Powertrain is comprised of Hydrogen PEM cells (18MW) and batteries (2.5MWh)
- Powertrain efficiency increased to 54.4%
- CO₂ Funnel Emissions are eliminated
- Fuel consumption decreased
 3.7x by mass and increased
 3.3x by volume (111.4 m³)

"Wind to Wake" Energies summary

"Take home" message

- All alternative fuel propositions, are comparable in terms of additional volume sacrifice compared to the original powertrain scenario
- Hydrogen system is the best option in terms of emissions output against total renewable energy investment.

YOUR QUESTIONS

Thank you for your attention

Any further questions: P.Manias@soton.ac.uk